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ABSTRACT

Petascale parallel computers with more than a million processing cores are expected to
be available in a couple of years. Although MPI is the dominant programming inter-
face today for large-scale systems that at the highest end already have close to 300,000
processors, a challenging question to both researchers and users is whether MPI will
scale to processor and core counts in the millions. In this paper, we examine the issue
of scalability of MPI to very large systems. We first examine the MPI specification itself
and discuss areas with scalability concerns and how they can be overcome. We then
investigate issues that an MPI implementation must address in order to be scalable. To
illustrate the issues, we ran a number of simple experiments to measure MPI memory
consumption at scale up to 131,072 processes, or 80%, of the IBM Blue Gene/P system
at Argonne National Laboratory. Based on the results, we identified nonscalable aspects
of the MPI implementation and found ways to tune it to reduce its memory footprint.
We also briefly discuss issues in application scalability to large process counts and fea-
tures of MPI that enable the use of other techniques to alleviate scalability limitations
in applications.
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1. Introduction

We are fast approaching an era where the largest supercomputers in the world will
have more than a million processing cores. For example, the Sequoia machine to
be deployed at Lawrence Livermore National Laboratory in 2012 will have close to
1.6 million cores [1]. The Message-Passing Interface (MPI) [25] is currently the pre-
dominant model for programming large-scale parallel machines, the largest of which
today has close to 300,000 cores (the IBM Blue Gene/P at the Jülich Supercomput-
ing Center). As systems scale to millions of cores, many users and researchers are
concerned whether MPI (and applications written in MPI) will scale to that level.
There are multiple aspects to the scalability issue. First, is the MPI specification
itself scalable, or are there aspects of the interface that may have issues at large
scale? Related to this, is there missing functionality that would enable more scal-
able programming and/or enhance the utilization of large-scale systems? Second,
are typical MPI implementations scalable, and what do implementations need to
address to improve their scalability? Third, are the parallel algorithms that MPI
applications use themselves scalable to millions of cores? We examine these issues
in this paper.

Factors affecting scalability include time and space (memory) consumption. A
nonscalable implementation of an MPI function is an implementation whose run-
ning time or memory consumption per process increases linearly (or worse) with the
number of processes, all other things being equal. A nonscalable specification of an
MPI function is one that forces any implementation of the construct to consume
time or memory that grows linearly (or worse) with the number of processes. For
example, if the time taken by MPI Comm spawn increases linearly with the num-
ber of processes being spawned, it indicates a nonscalable implementation of the
function (or a scalability problem with the interface). Similarly, if the memory con-
sumption of MPI Comm dup increases linearly with the number of processes, it is
not scalable. An MPI function such as MPI Alltoallw that takes several array argu-
ments of size proportional to the total number of processes is a nonscalable MPI
construct, since no implementation can circumvent this requirement. Such examples
of nonscalability need to be identified and fixed, both in the MPI specification and
in implementations. The goal should be to design and use constructs whose time
and space requirements scale sublinearly with the number of processes.

2. Scalability Issues in the MPI Specification

Although the developers of MPI did not envision million-core systems when MPI
was first designed, MPI was nonetheless designed with scalability in mind. For
example, a design goal was to enable implementations of MPI that maintain very
little global state per process and require very little memory management within
MPI (all memory for communication can be in user space) [14]. MPI also defines
many operations as collective (called by a group of processes), which enables them
to be implemented scalably and efficiently. Nonetheless, examination of the MPI
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specification reveals that some parts of it may have issues at large scale, particularly
with respect to memory consumption.

For the discussion below, we use p to denote the number of processes in a com-
municator.

2.1. Irregular collectives

Many collectives in MPI have an irregular (or vector, “v”) version that allows users
to transfer unequal amounts of data among processes. These collectives take one
or more arguments that are arrays of size p, for example, the arrays of counts and
displacements in MPI Gatherv and MPI Scatterv. An extreme case is MPI Alltoallw,
which takes six such arrays as arguments: counts, displacements, and datatypes for
both send and receive buffers. Using such parameters is nonscalable: on a million
processes, each array will consume 4 MiB on each process (assuming 32-bit integers).
Furthermore, any MPI implementation is forced to scan most of these arrays to
determine which data have to be communicated.

Irregular collectives are often used in applications because MPI lacks other ways
to express communication within a sparse subset of processes in a communica-
tor. For example, in applications that require nearest-neighbor communication in a
Cartesian grid, each process may perform an MPI Alltoallv on MPI COMM WORLD and
specify 0 bytes for all processes other than its neighbors.a The PETSc library [35],
for example, uses MPI Alltoallv in this manner. While most MPI implementations
optimize this pattern by communicating only with processes that have nonzero data,
the MPI implementation must still scan through the entire array of data sizes to
know which processes have nonzero data, and the user must allocate and initialize
this array. On large numbers of processes, the time to read the entire array itself
can be large and increases linearly with system size, even though the number of
neighbors a process communicates with remains fixed. Figure 1 shows this effect on
an IBM Blue Gene/P for calling MPI Alltoallv with zero-byte messages (no actual
communication).

To avoid this problem, some computational libraries, such as PETSc, disable
MPI Alltoallv-based communication by default and instead perform direct point-to-
point communication among nearest neighbors, which may not be as efficient as a
concisely represented collective operation could be. The MPI Forum is discussing
ways to improve this situation in MPI-3 by means of sparse collective operations.
A concrete proposal has been put forth in [19].

aThis communication cannot be done easily by using subcommunicators because each process
may belong to many subcommunicators and the collectives would have to be carefully ordered to
avoid deadlocks. Such a scheme would also serialize much of the communication. Note that these
concerns would be partly alleviated by collectives with nonblocking semantics.
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Fig. 1. Zero-byte Alltoallv time on IBM Blue Gene/P (no actual communication).

2.2. Graph topology

One of the most nonscalable constructs in MPI (memorywise) is the general graph
topology. An MPI program can specify the communication pattern of the applica-
tion as a directed graph, with edges of the graph representing the communication
between processes. This allows the MPI implementation to optimize communica-
tion by appropriate reordering or placement of processes. The problem with the
specification is that it requires the entire communication graph to be supplied on
each process. It therefore requires Ω(p + e) or O(p2) space per process, where e
is the number of edges in the graph, and Ω(p2 + pe) or O(p3) in total (across all
processes). Other limitations of this interface are discussed in [44].

The latest version of the MPI Standard, MPI-2.2 [25], introduces a new graph
topology interface, MPI Dist graph create, which enables a fully distributed specifi-
cation of the communication topology with only O(p+ e) total memory consump-
tion, as further explained in [18]. A scalable implementation, where no single process
needs to store the entire graph at any time, is important at large scale.

2.3. MPI groups and communicators

An essential, but potentially nonscalable, feature of MPI is the functionality for
forming arbitrary subsets of process groups and building communicators. This rich
and general set of operations leads implementations to use explicit enumerations
for the mapping of processes to processors or cores. Such explicit enumerations,
which may be impossible to avoid in the general case, may become an issue at
large scale. Recently, researchers have explored compact representations for process
groups [22, 46], but further work is needed.
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2.4. Fault tolerance

On systems with millions of cores, the probability of failure or unrecoverable error
in some part of the system becomes very high. As a result, greater resilience against
failure is needed from all components of the software stack, from low-level system
software to libraries and applications. The MPI specification already provides some
support to enable users to write programs that are resilient to failure, given ap-
propriate support from the implementation [16]. For example, when a process dies,
instead of aborting the whole job, an implementation can return an error to any
other process that tries to communicate with the failed process. The application
then must decide what to do at that point.

However, more support from the MPI specification is needed for true fault tol-
erance. For example, the current set of error classes and codes needs to be extended
to indicate process failure and other failure modes. Support is needed in areas such
as detecting process failure, agreeing that a process has failed, rebuilding a com-
municator in the event of process failure or allowing it to continue to operate in
a degraded state, and timeouts for certain operations such as the MPI-2 dynamic
process functions. A number of other researchers have studied the issue of fault
tolerance in MPI in greater detail [3, 4, 10, 11, 12, 21]. The MPI Forum is actively
working on adding fault-tolerance capabilities to MPI-3 [27].

Some of the interfaces for detecting and reporting errors in MPI are also
not scalable. Consider the MPI dynamic process routines, MPI Comm spawn and
MPI Comm spawn multiple. When used with the soft info key, these routines pro-
vide a “best effort” attempt to spawn all of the processes, so that if some of the
spawn operations fail, the implementation is allowed to return less than the re-
quested number of processes. However, the error codes for the attempted spawn
operations are returned in an array of size equal to the number of processes be-
ing spawned. A more scalable approach would be for the MPI implementation to
allocate memory and return an array of size equal to the number of failures. This
approach, however, would be a departure from the current convention in MPI in
which the user allocates such memory. Another possible solution would be to ex-
tend the user-defined error handler mechanism to provide an iterator interface for
accessing error codes, which may reduce the memory required to represent the error
codes at the cost of requiring the application to iterate over each error code.

2.5. Collective communication

The collective communication operations in MPI have blocking semantics, and slight
load imbalances or delays (operating system or network noise) can lead to significant
process synchronization (waiting) times at large scale [34]. Synchronization issues
are worse for collective communications that potentially synchronize entire process
groups. Synchronization delays can often be mitigated by nonblocking communica-
tion operations [17], which relax the synchronization by splitting the operation into
separate start and wait phases. The time window between start and wait can be used
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as a buffer to mitigate the influence of load imbalance or delays. The MPI Forum
originally believed (as of MPI 2.0) that threads could be used to provide efficient
nonblocking collective operations. However, experience with systems that provide
only one thread per core and with systems where the necessary thread safety also
adds a significant performance overhead has caused the MPI Forum to consider the
addition of nonblocking collective operations in MPI-3 [26].

An alternative or orthogonal implementation approach is to design algorithms
for collective operations that are more resilient to nonsynchronized process arrival
patterns. A start in this direction has been outlined in [33].

3. MPI Implementation Scalability

In terms of scalability, MPI implementations must pay attention to two aspects as
the number of processes is increased: memory consumption of any function and the
performance of all collective functions (including functions such as MPI Init and
MPI Comm split).

3.1. Point-to-point communication

In communication patterns where there are unexpected messages (the sends occur
before the matching receives are posted), parts of the messages or control messages
need to be buffered at the receiver side [9]. At large scale, the number of unexpected
messages could become very large, requiring an inordinate amount of memory for
buffering. This problem needs to be dealt with, for example, by using some kind
of flow-control system. A protocol for the Blue Gene systems was designed and
evaluated in [13]. A related problem is the number of connections (p2) needed on
systems that are connection oriented and the need to establish connections in a lazy
(as-needed) manner (also see Section 3.5).

Another potential issue arises when MPI is implemented over RDMA networks.
Implementations often choose to expose a memory region, called mailbox, to remote
processes in order to facilitate fast RDMA puts without synchronization overheads.
A näıve implementation would create one mailbox for each communication peer
and thus occupy O(p) memory per process (depending on lazy connection estab-
lishment). A scalable implementation should limit the number of mailboxes and fall
back to synchronizing communication mechanisms. This can be done by dynami-
cally allocating a fixed pool of mailboxes to communication neighbors (i.e., a cache
of mailboxes).

3.2. Process mappings

MPI communicators usually contain a mapping from MPI process ranks to proces-
sor id’s. This mapping is typically implemented by an array of p entries for direct,
constant-time lookup, possibly with optimizations for particular mappings (iden-
tity mapping, other very regular patterns). A number of other mappings are often
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maintained, for instance, to enable fast navigation within and across the nodes of
an SMP cluster. Although convenient and very fast, this solution, which requires
linear space per process per communicator and quadratic space over the system, is
clearly not scalable.

To alleviate the problem, communicators with the same process-to-processor
mapping can share mappings. For example, if a communicator is dup’ed with
MPI Comm dup, the new communicator can share the mapping with the original
communicator.

A solution to this problem is needed. Simple (and very restricted) solutions
within the context of Open MPI were considered in [6]. A more general ap-
proach could be based on representations of mappings by simple linear functions,
ia+ b mod p. The identity mapping is often all that is needed for MPI COMM WORLD.
Such linear representations, when possible, can be easily detected and cover
many common cases, e.g., subcommunicators that form consecutive segments from
MPI COMM WORLD. A solution in this direction was explored in [46]. Other approaches,
incorporated into the FG-MPI implementation, were described in [22]. However, this
simple mapping covers only a very small fraction of the p! possible communicators,
most of which cannot be represented by such simple means. The regular structure
is often lost when process topologies are remapped (reorder=1 during creation),
and simple schemes will fail to compress the storage. For more general approaches
to compact representations of mappings, see the citations in [46].

3.3. Memory overheads in communicator creation

Creating duplicate communicators can consume a lot of memory at large scale if care
is not taken. In fact, an application (Nek5000) running on the IBM Blue Gene/P
at Argonne National Laboratory initially failed at large scale because it ran out of
memory after less than 60 calls to MPI Comm dup.

To study this issue, we ran experiments on the Argonne Blue Gene/P to measure
the memory overhead involved in creating new communicators. Figure 2 shows the
results of an experiment to determine, for different numbers of processes, how many
communicators can be created by calling MPI Comm dup of MPI COMM WORLD in a
loop until it fails. Note that the maximum number of communicators supported by
the implementation by default is 8,189 (independent of MPI Comm dup) because of
a limit on the number of available context ids.

With the default settings, the number of new communicators that can be created
drops sharply starting at about 2,048 processes. For 128K processes, the number
drops to as low as 264. Although the MPI implementation on the Blue Gene/P does
not duplicate the process-to-processor mapping in MPI Comm dup, it allocates some
memory for optimizing collective communication. For example, it allocates memory
to store “metadata” (such as counts and offsets) needed to optimize MPI Alltoall
and its variants. This memory usage is linear in p. Having such metadata per com-
municator is useful as it allows different threads to perform collective operations on
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Fig. 2. Maximum number of communicators that can be created with MPI Comm dup of
MPI COMM WORLD on IBM BG/P for different sizes of MPI COMM WORLD.

different communicators in parallel. However, the per communicator memory usage
increases with system size. Since the amount of memory per process is very limited
on the Blue Gene/P (512 MiB in virtual node mode), this optimization also limits
the total number of communicators that can be created with MPI Comm dup.

This scalability problem can be avoided in a number of ways. The simplest way
is to use a BG/P environment variable to disable collective optimizations, which
eliminates the extra memory allocation. However, it has the undesirable impact
of decreasing the performance of all collectives. Another approach is to use an
environment variable that delays the allocation of memory until the user actually
calls MPI Alltoall on the communicator. This approach helps only those applications
that do not perform MPI Alltoall.

A third approach that we have implemented is to use a buffer pool that is
sized irrespective of the number of communicators created. Since the buffers exist
solely to permit multiple threads to invoke MPI Alltoall concurrently on different
communicators, it is sufficient to have as many buffers as the maximum number
of threads allowed per node, which on the Blue Gene/P is four. By using a fixed
pool of buffers, the Nek5000 application scaled to the full system size without any
problem.

Figure 3 shows the memory consumption in all these cases after 32 calls to
MPI Comm dup. The fixed buffer pool enables all optimizations for all collectives
and takes up only a small amount of memory.

3.4. Memory overheads in one-sided communication
implementations

One-sided operations readily lend themselves to be implemented on architectures
that offer remote direct memory access (RDMA). In MPI one-sided communication,
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Fig. 3. MPI memory usage on BG/P after 32 calls to MPI Comm dup of MPI COMM WORLD (in
virtual node mode).

since the base of the window might have a different address at each process, an
RDMA put-based method seems to require a table of size Ω(p) at each process.
(Another parameter than can be different on each process and may require a table
of size Ω(p) is the “displacement unit” passed to MPI Win create.)

In order to retain the advantages of RDMA and also achieve constant mem-
ory overhead, an implementation could create a translation cache of fixed size at
each process (similar to a TLB). When a one-sided request cannot be served from
the cache, the library can fetch the required translation from the target process
(e.g., with RDMA-Get) and add it to the local cache. A similar technique could be
used for the displacement units; however, because the expected number of differ-
ent displacement units (architectures) is low, other techniques could be used (e.g.,
compression schemes similar to the ones proposed in Section 3.2).

3.5. Scalability of MPI Init

Since the performance of MPI Init is not usually measured, implementations may
neglect scalability issues in MPI Init. On large numbers of processes, however, a
nonscalable implementation of MPI Init may result in MPI Init itself taking several
minutes. For example, on connection-oriented networks where a process needs to
establish a connection with another process before communication, it is tempting
for an MPI implementation to set up all-to-all connections in MPI Init itself. This
operation involves Ω(p2) amount of work and is inherently nonscalable. A better
approach is to establish no connections in MPI Init and instead establish a connec-
tion when a process needs to communicate with another. This method does make
the first communication more expensive, but only those connections that are really
needed are set up. It also minimizes the number of connections, since applications
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written for scalability are not likely to have communication patterns where all pro-
cesses directly communicate with all other processes.

Figure 4 shows the time taken by MPI Init on a Linux cluster with TCP when
all connections are set up eagerly in MPI Init and when they are set up lazily. The
eager method is clearly not scalable.

3.6. Scalable algorithms for collective communication

Good MPI implementations have collectives with low latency (proportional to the
diameter of the communication network) for small messages and high bandwidth
for large messages. They also carefully adapt to and exploit the capabilities of the
underlying communication system (clustered, single- or many-ported, tree- or mesh-
shaped; special hardware capabilities; etc.). We note that some algorithms that are
attractive in principle may run into problems at large scale. For instance, a broad-
cast implemented as a scatter followed by an allgather [7, 42] may, if implemented
näıvely, give rise to very small blocks in the allgather phase. For example, for a
1 MiB broadcast on one million processes, the allgather phase may involve one-byte
messages. Such problems can be countered by less näıve implementations, which
switch from scatter to a logarithmic broadcast when message blocks go under a
certain threshold; the allgather phase will then consist of multiple simultaneous
allgather operations on disjoint subsets of processes [45]. Algorithms with similar
properties for reduction operations are given in [38].

Topology-specific optimizations are also essential at large scale. Most intercon-
nects have smaller diameters than the size of the network (O(log p) on switched net-
works and O( 3

√
p) on 3D torus networks). A pipelined algorithm that streams data

on a spanning tree embedded in the network topology will provide more scalable per-

formance because the throughput of the collective is determined by message size
diameter .
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For example, on the BG/P, the six-color torus algorithm can keep 95% of all the
links busy during an 8 MiB broadcast operation [24].

Global collective acceleration supported by many networks such as Quadrics, In-
finiBand, and Blue Gene may be another solution for collectives on MPI COMM WORLD.
On the Blue Gene/P, for example, the MPI Broadcast, MPI Reduce, MPI Allreduce,
MPI Scatter, MPI Scatterv, and MPI Allgather collectives take advantage of the com-
bine and broadcast features of the tree network [2].

4. Enabling Application Scalability

As emerging hardware architectures make greater degrees of parallelism available,
and even necessary, existing applications are facing the problem of scaling up. The
complexity of solving this problem depends entirely on the basic algorithms used
by the application, and so no completely general approach will do. In this section,
we describe some ways in which features of MPI, perhaps not being used in the
current version of a particular application, can play an important role in enabling
that application to run effectively on more processors. In many cases, it may be
possible to retain most of the existing application code, which is of course desirable
from the application’s point of view.

4.1. All-to-all communication

All-to-all communication is not a scalable communication pattern. Each process has
a unique data item to send to every other process, which leads to limited opportu-
nities for optimization compared with other collectives. This is not a problem with
the MPI specification but is something applications should be aware of and avoid
as far as possible. Avoiding the use of all-to-all may require new algorithms.

4.2. Higher-dimensional decompositions with MPI

One relatively straightforward case occurs when the application consists of calcu-
lations carried out on a rectangular two- or three-dimensional mesh with nearest-
neighbor communication, but the application has parallelized the computation with
a one-dimensional decomposition of the mesh. This approach results in contiguous
buffers for the MPI sends and receives, which simplifies the application. Straight-
forward arithmetic shows that as the number of processors and mesh cells scales
up, it becomes more efficient to use a two- or three-dimensional decomposition of
the mesh. This results in noncontiguous communication buffers for sending and re-
ceiving edge or face data. MPI can help by providing the functions for assembling
MPI datatypes that describe these noncontiguous areas of memory. Modern MPI
implementations then use particularly efficient algorithms for communicating these
areas [40, 47].
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4.3. Enabling topology mapping

The MPI-2.2 standard allows a scalable specification of graph communication
topologies, and the reorder argument allows for optimized mappings to the un-
derlying topology. Especially on sparse topologies like 3D tori, an efficient process-
to-node mapping can be crucial to large-scale application performance. MPI users
should consider specifying their communication topologies and reordering the ap-
plication data as indicated by the MPI library (according to the new ranks in the
distributed graph communicator).

4.4. Use of threads with MPI

In the earlier parts of this paper, we treated “MPI on millions of cores” as if it
meant that the application would have millions of separate MPI ranks. This is un-
likely to be the case in practice. As the amount of memory per core decreases,
applications will be increasingly motivated to use a shared-memory programming
model on multicore nodes, while continuing to use MPI for communication among
address spaces. MPI supports this transition by having clear semantics for inter-
operation with threads, based on four levels of thread safety that can be required
by an application and provided by an MPI implementation. Although no particular
thread system is mentioned in the MPI standard, the MPI specification of levels
of thread safety meshes particularly well with the OpenMP standard. This fea-
ture has made OpenMP+MPI the currently most widely used hybrid programming
method [8, 37, 39]. The MPI Forum is also discussing extensions to MPI in MPI-3
for more efficient support of hybrid programming [28].

4.5. Use of MPI-based libraries to hide complexity

We describe an example of how MPI enables the development of libraries that make
it easier to write applications.

One of the most obviously nonscalable approaches to parallel programming is
the “manager-worker” paradigm [15], which can achieve good load balancing at
the expense of having a single manager process to coordinate the dispensing of
work to the worker processes, collection of results, and perhaps addition of new
work to the work queue. We recently worked with a Monte Carlo application in
nuclear physics [36] that used a variation of this approach and was stuck at about
2,000 processors, with the ambition of going to tens of thousands. MPI helped solve
this problem by enabling the construction of a general-purpose library called ADLB
(Asynchronous Dynamic Load Balancing) [5] that eliminated the single manager as a
bottleneck by providing a simple put/get interface to a distributed work queue. The
application actually became simpler than before because the MPI communication
disappeared; any application process simply puts new work to the queue or retrieves
work from it. The ADLB implementation, however, is relatively complex and for
scalability and efficiency requires a full range of MPI features, including thread
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safety, multiple communicators, derived datatypes, asynchronous sends and receives,
and the “ready” send operation, all of which are hidden from the application. In
this way, MPI supports application scalability while actually simplifying application
code.

4.6. Performance and debugging tools

An important feature of the MPI standard is a clever definition of an interface, called
PMPI, that enables portable profiling of the MPI calls in an application without
modifying (or even having access to) the application’s source code. This feature has
enabled the development of a number of performance and debugging tools, which
immensely help application development, testing, and tuning. Examples of these
tools include TAU [41], Intel Trace Collector and Trace Analyzer [20], Vampir [48],
Paraver [32], mpiP [30], KOJAK [23], Paradyn [31], and TotalView [43]. More work
is needed in this area, however, particularly tools that will scale to jobs running
on millions of cores. The MPI Forum is also addressing this issue by investigating
additional support for tools in MPI-3 [29].

5. Conclusions

We believe MPI is ready for scaling to millions of cores, although issues such as
those discussed in this paper need to be fixed in both the MPI standard and in
MPI implementations. Examples of nonscalable parts of the MPI standard include
irregular collectives and some other functions that take array arguments of size pro-
portional to the total number of processes. There is also a need for investigating
systematic approaches to compact, adaptive representations of process groups. MPI
implementations must pay careful attention to the memory requirements of func-
tions and systematically root out data structures whose size grows linearly with the
number of processes. To obtain scalable performance for collective communication,
MPI implementations may need to become more topology aware or rely on global
collective acceleration support. MPI also provides other features, such as support
for building complex libraries and clear semantics for interoperation with threads,
that enable applications to use other techniques to scale when limited by memory
or data-size constraints.
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[38] R. Rabenseifner and J. L. Träff. More efficient reduction algorithms for message-
passing parallel systems. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface. 11th European PVM/MPI Users’ Group Meeting, volume 3241 of
Lecture Notes in Computer Science, pages 36–46. Springer-Verlag, 2004.

[39] A. Rane and D. Stanzione. Experiences in tuning performance of hybrid
MPI/OpenMP applications on quad-core systems. In Proc. of 10th LCI Int’l Con-
ference on High-Performance Clustered Computing, 2009.

[40] R. Ross, N. Miller, and W. Gropp. Implementing fast and reusable datatype process-
ing. In Recent Advances in Parallel Virtual Machine and Message Passing Interface.
10th European PVM/MPI Users’ Group Meeting, volume 2840 of Lecture Notes in
Computer Science, pages 404–413. Springer-Verlag, 2003.

[41] TAU - Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/tau
(July 2010).

[42] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communica-
tion operations in MPICH. Int’l Journal of High-Performance Computing Applica-
tions, 19(1):49–66, 2005.

[43] TotalView Parallel Debugger. http://www.totalviewtech.com (July 2010).
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[45] J. L. Träff. A simple work-optimal broadcast algorithm for message-passing parallel
systems. In Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face. 11th European PVM/MPI Users’ Group Meeting, volume 3241 of Lecture Notes
in Computer Science, pages 173–180. Springer-Verlag, 2004.
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